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J .  PHYS.  A ( P R O C .  P H Y S .  S O C . ) ,  1968 ,  SER.  2 ,  V O L .  1.  P R I N T E D  I N  G R E A T  B R I T A I N  

The algebraic structure of the vacuum Riemann tensor 

J. A. ROCHE and J. S. DOWKER 
Department of Theoretical Physics, University of Manchester 
Communicated by S. F. Edwards; MS.  received 1 s t  March 1968 

Abstract. A (2 j  + 1)-spinor formalism is used to discuss the Bel-Petrov-Penrose 
classification of the Weyl conformal tensor. A convenient pictorial representation 
of this classification is presented in the form of a series of intersecting manifolds 
nested in a four-dimensional projective space. The relation to other formalisms is 
considered briefly. 

1. Introduction 
An invariant classification of the possible types of space-time is the object of the 

investigation of the algebraic structure of the Riemann-Christoffel curvature. Apart from 
being an interesting mathematical problem such a classification is of more 'practical' 
interest and has found use in the theory of gravitational radiation (e.g. Pirani 1965, 1962) 
and in the discussion of exact solutions of Einstein's equations (e.g. Ehlers and Kundt 1962). 

There are many works on this subject and we shall not attempt to give an exhaustive 
bibliography. We hope, however, that our references are reasonably comprehensive. The  
present work will consist essentially of a review of the results obtained by other workers 
but couched in a somewhat different mathematical language, viz. that of the (2j+ 1)-spinor 
calculus. This has been discussed earlier (Dowker and Goldstone 1968, to be referred to 
as GAR, and references therein), and will not be reviewed here. We have, however, to 
consider the question of ( Z j +  1)-spinor algebra in curved space and this is done in the next 
section. This development is that of our earlier work (Dowker and Dowker 1966, to be 
referred to as PAS), the notation of which we use now. 

I n  $ 3 the question of canonical forms is introduced and the special case of spin 2 is 
particularly dealt with. This yields the Petrov-Penrose classification (e.g. Pirani 1965). 
A geometrical picture of this last classification is given in $4. The concept of principal 
null spinor is discussed in $5 ,  and in $ 6  the relation of the present formulation to that of 
earlier authors is considered. Finally in $ 7  we present some general comments on the 
pros and cons of our treatment. 

2. (2j + 1)-spinors in Riemannian space-time, (2j+ 1)-adic components 
Since a Riemannian space is pointwise flat we can take the whole development of GAR 

to be valid at each point of the space independently. T o  be more precise, consider the 
group GP of homogeneous automorphisms of the flat tangent space at P, i.e. the trans- 
formations 

dxU --f dxlU = AYv dxv at  P 

which preserve the tangent scalar product at P, 

G, is isomorphic to the homogeneous Lorentz group and we can hence talk about the 
corresponding (2j+ 1)-spinor representations of G, which are denoted by +$. Under 
general coordinate transformations these spinors transform as scalars. 

If, as we may, we take the +g) not to transform under GP (see PAS, $2)  then we can 
introduce local Lorentz transformations (which are to be distinguished from GP) as they 
are usually defined between Cartesian frames by using the spinor analogue of the tetrad 
formalism. We choose 2j+ 1 base (2j+ 1)-spinors, E(j), where the small index just lab E ' :  

527 
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each spinor and runs from +j  to -j like the big index. These base spinors satisfy the 
conditions 

cgcf;f. = 8". 
m M' - 8 M '  (1) 

c M 5 m  - M '  

Small indices are raised and lowered by d the flat space spinor metric and the large indices 
by C (see GAR and PAS). The  5 also satisfy the requirements 

where i) is the usual, i.e. flat space, 3j symbol and ( j j j ) its generalization 
to curved space (see M. Goldstone, unpublished). In  general, objects with only small 
indices are the flat space ones and the cipher can hence be left off.? 

Any (2j+ 1)-spinor +M can be expanded in the thus 

+M = +me&* (3) 

We may call the coefficients +m the (2j+ 1)-adic components of + (cf. Newman and Penrose 
1962). They are invariant under spin basis changes, general coordinate transformations 
and the operations belonging to Gp. The  covariant derivative of such quantities is thus 
the same as the ordinary derivative. 

The  conditions (1) and (2) imply that 

etc. 

If we now consider a change of the (2j+ 1)-ad basis, 

e': = Ayn<& 

so that 5' also satisfies (1) and (2) then by the theorems of Ostrowski (1919) and of Ostrowski 
and Schur (1922) (see GAR) A: must equal BmAn, a Lorentz group representation matrix. 
The  relation between the old and new (2jfl)-adic components of + is determined by 

+ M  = +me; = +;5'E 
and is therefore given by 

where 
+A = a(i,O) + 

mn n 

ggf )  = [exp(iEuV4fiv)] F 
is the usual Lorentz transformation matrix, Juv being the flat space generators (see PAS). 
Thus, the change of (2j+ 1)-ad basis can be called a (local) Lorentz transformation and it 
is clear that we can now use, with no changes, the formalism of GAR if all quantities are 
referred to flat space. 

The  particular case in which we are interested is that of spin 2 since this corresponds 
to gravitational theory in the following way. 

When Ruv = 0 (Einstein's vacuum field equation for gravitation) the Riemann- 
Christoffel curvature tensor reduces to the Weyl conformal tensor, Cuvcra. This latter has 

7 The significance here of the terms flat space and curved space is simply that in flat space the 
spinor basis is chosen to be the same (say spherical) at every point, whereas in curved space we allow 
the basis to vary from point to point. The 3 j  symbols, for example, are then functions of position. 
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all the symmetries of the curvature tensor but in addition is traceless and so belongs to 
the (2, 0) irreducible representation of the local Lorentz group. We group the ten indepen- 
dent components of CuvcrB into a 5-spinor 4 (using the Abv spinor tensors) discussed in 
GAR. Thus we have 

and the pentad components of 4 are of course given by 
+A4 = ( A u v a R ) M C u v a 4  (5  ) 

It is clear that the dm are the components of the spinor obtained by an equation like (5) 
from the tensor tetrad components of CuvaR using flat space AuvruR. Under rotations of the 
tensor tetrad these latter do not transform while the tetrad components of CllvcrR do. We 
then see that these rotations correspond to our local Lorentz transformations since under 
them C # J ~  clearly suffers such transformations. 

3. Canonical forms and the classification 
The question of canonical forms is now easily expressed. We seek by an appropriate 

local Lorentz transformation to make vanish as many components as possible of a given 
q5m. The possible 4 ’ s  then divide into various types or classes according to whether a 
particular canonical form is possible or not. The inequivalent canonical forms thus provide 
an invariant classification. We should mention here a small point concerning the nature 
of a ‘canonical’ form which is exemplified by the case of spin 1, e.g. electromagnetism. It 
is well known that a Lorentz transformation applied to the electromagnetic field is just a 
complex orthogonal transformation (rotation) of the ‘vector’ or better 3-spinor, H -  iE. 
By a suitable rotation of the axes it is obvious that we can make all but one of the components 
of this vector zero. This will be a canonical form for this case. In  using the particular 
combination H-iE we have chosen the spinor metric to be unity. However, in angular 
momentum analyses it is more usual to use the isotropic basis in which the three com- 
ponents of the 3-spinor are given by 

1 

4,, = H,- iE, 
1 

+-1 = - {(HZ - E,) - i(H, + Q}. 
4 2  

I n  this basis the canonical forms obtained in the orthogonal basis used previously are 
given by 

if (H-iE)llx if ( H -  iE)lly if (H-iE)llz 

and it will be seen that in two of the cases two components of the spinor are non-zero, 
although there is a relation between them. The  three spinors in (6) do not represent distinct 
canonical forms. The  choice between them is the same choice we have in writing a quadratic 
form either as the sum of two squares or as the product of two linear factors, and this leads 
us onto the general treatment of canonical forms. 

As described in GAR, associated with a +n(j) is a quantic of order 2jin some parameter t ,  
the 4, being the coefficients of this quantic. The  search for the canonical forms of 4 is 
the same as the search for the canonical forms of the associated quantic. This is a classic 
mathematical problem and is usually discussed using the techniques of invariant theory 
(see Turnbull 1960, p. 265) and we can, in fact, simply read off the results for the particular 
case in which we are interested, assuming, of course, that it has been discussed. 
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Essentially the classification is based on the coincidences amongst the 2 j  values of t 
obtained by solving the quantic equation given by setting the associated quantic equal to 
zero. 

Thus, for spin 2, we have the possible root distributions [4], [31], [22], [Zll], [1111] 
where, for example, [22] means that we have two pairs of equal roots. The conditions for 
the existence of a particular root distribution are relations amongst the irreducible con- 
comitants of the quantic. We give here the result for the binary quartic (spin 2) which 
is just the Petrov-Penrose classification of the vacuum Riemann tensor (Penrose 1960) : 

[1111] I 13-27J2 # 0 
[211] I1 13-27J2 = 0, I # 0 

1221 D Tm = 0 
[31] I11 I = O = J  
[4] N Hm = 0 

0 + m  = 0 
where, specifically, the set of irreducible concomitants is given by 

I =  +"dm 

Here, t ( j )  is a null (2j+ 1)-spinor satisfying 

(see G,4R, 4 2). I t  can be checked, using the known values of the 3j  symbols, that these 
expressions are identical, apart from multiplicative factors, to the (coefficients of the) 
concomitants as given in the standard works (e.g. Salmon 1878, Elliott 1895, Burnside 
and Panton 1904). 

We note, in addition, that there are two subtypes of type I fields, viz. those, I,, for 
which J = 0 and those, I,, for which I = 0. 

The corresponding canonical forms can now be found by trial and error or be read 
oft' from the standard works. They are 
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11= f), 

D =  f), 
b = ( -H2)1’2. 

a arbitrary. 

Some other equivalent forms can be found. 

4. A geometrical representation of the classification 
One simple and direct geometrical picture of the classification is one that we have 

already given and is that of the distribution of the roots of the quantic. These we can think 
of as being arranged on the complex (projective) line. We recognize the fact that what we 
are giving here is simply one of the many possible geometrical interpretations of binary 
invariant theory (see, e.g., Turnbull 1960, p. 280, Grace and Young 1903). I n  GAR, 5 2, 
we discussed a rather attractive and suggestive representation in which the roots of the 
quantic determine 2 j  points on a norm (unicursal) curve CZj.  These points are the feet 
of the osculating (2j- 1)-flats from the point in the 2j-dimensional complex projective 
space whose homogeneous coordinates are the 2j+ 1 components 4,. When the object 4 
belongs to a particular type it means that the corresponding point has some projectively 
invariant relationship with the norm curve (e.g. Grace 1928). 

For spin 1 the classification is simple and is just that into null and non-null fields familiar 
from eIectromagnetic theory. Null fields correspond to points on, and non-null fields to 
points off, the norm curve C, which in this case is a conic. The  situation for spin 2 is 
similar but, of course, more complicated. The  geometrical details have been worked out 
by Brusotti (1904) (see Telling 1936 for a detailed account and interesting results) and we 
shall content ourselves here with a statement of the answers. (A more complete discussion 
will be found in the Manchester thesis of one of us (J.A.R.).) If H ,  = 0, 4 lies on C,. 
If I = 0 = J ,  4 lies on a tangent to C,. If I3 = 27J2, 4 lies on a tangent plane to C,, and 
if T, = 0, 4 lies on two tangent planes to C,. If J = 0, + lies on a chord of C,. 

T o  determine the embedding properties of the manifolds determined by these various 
conditions we note the following results, which follow by symbolic or ordinary methods: 
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(i) Any two of I = 0, J = 0,  I 3  = 27J2 implies the third. 
(ii) T ,  = 0 implies I 3  = 2 7 P .  
(iii) I = 0, J = 0 and T ,  = 0 implies H ,  = 0 by the syzygy T2+4H3 = ( P H I -  Q3J. 
(iv) H ,  = 0 implies I = 0, J = 0 and T ,  = 0. 
These results give the scheme according to which the five spaces 

N (i.e. H ,  = 0 ) )  I11 ( I  = 0 = J ) ,  D ( T ,  = 0 ) )  I1 ( I 3  = 2 7 P ,  I # 0 )  

and I (general or I, or I,) are embedded in one another. This scheme is pictured in figure 1. 

Figure 1. The embedding relationships of the various Petrov-Penrose types. The 
dimensions of the manifolds have been reduced by one so that, e.g., the S, are to be 
pictured as ‘egg-shells’ in three-dimensional space (representing S4) which intersect 
along the curve 111. This curve intersects the curve D, which lies on the surface 11, in 
the points N (representing an SI). S, is a complex projective space of dimension n. 

In  the diagram shown, the dimensions of the manifolds have been diminished by one 
for representational purposes and the hypersurfaces S, are to be thought of as egg-shells 
embedded in a three-dimensional space (representing S,) so that I11 is to be pictured as a 
closed curve cutting D in N, which is represented by the two points marked N in the 
figure. 

From this structure follows directly the result of Bialas (1963) on the continuity proper- 
ties of the Petrov-Penrose classification, Our argument is most easily appreciated by 
reference to the spin 1 case. 

If, at a space-time point P, the field is non-null then the representative point in S, 
lies ofs the base conic C,. This means that there exists a finite-size neighbourhood around 
the point in S,, and hence in space-time around P, in which the field is everywhere non-null 
also. If the field at P happens to be null then the neighbourhood of the corresponding point 
in S, contains points both on and off the conic. In  other words, combining both cases, at a 
neighbouring space-time point the field can only be of equal or less algebraic speciality. 

A simple extension of this topological argument produces the same answer for the 
spin 2 case with the added complication that type I11 cannot unspecialize into type D 
since the manifold I11 does not contain the manifold D. Further, types I1 and D cannot 
unspecialize into types I1 or I, except in special cases. 

These results also follow, perhaps more directly, but less attractively in our view, from 
a consideration of the coincidences of four points on a line. 

5.  Principal null spinors 

(2j+ 1)-ad basis, 
Principal null spinors [ belonging to the field + are defined by the equation, in a 

- 
:c+ = 0 

where t is a null spinor, i.e. satisfies (7). By the standard theorems of algebra there will be, 
in general, 2j spinors [ satisfying (8). With each of these we can associate, as explained in 
GAR, a null space-time vector. These vectors are the principal null vectors as usually 
defined (Penrose 1960, 1965). 
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If the parameter from which the null spinor E in (8) is constructed is denoted by t then 
equation ( 8 )  is just the quantic equation referred to in $ 3. The  2j principal null spinors 
are thus obtained by substituting the 2j roots of this equation into E.  Instead of talking 
about coincidences amongst the roots we can then talk about coincidences amongst the 
principal null spinors (or vectors). 

No more will be said about principal null spinors here except that, just like principal 
null 2-spinors and vectors, they can be used to give an expression for the field 4. Thus 
for type I fields (the most general ones) we have 

where E ~ , . . .  is a Levi-Civita permutation symbol (cf. Veblen and von Neumann 1936). 

6. Relation to other formalisms 
In  the purely tensor approach as used by Sachs (1961), for example, the independent 

(invariant) components of the Weyl tensor are ‘projected out’ using the null tetrad formalism 
(see, for example, Pirani 1965). 

kum, = Pt,  = 1, 
Then we make the combinations (Sachs 1961) 

These form, essentially, a 3-spinor, or bivector, basis. Now the further five combinations 

4 m  a ~ m m l . . . m a ~ f ~ l  t m 2 j  

Four vectors k ,  m, t ,  t are constructed with the properties 
kuk, = mfimli = tut, = kut, = mat, = 0.  

MI”V = 2kUmVI + 2ibtVI Vw = 2kClipI , u”v = 2m[”vl. 

are made, 

v u ~ v c t ~ ,  vf i~Mu,+ vu4Miiv, MfivMuL?f  uuvua,+ v,vuaR 

U,VM,, f MLlVu,,, U,, V u ,  

<& = AgaO (2)V,VVU,, etc. 

4 2  = c f i v a ,  v,, v,, = 4 ~ ~ ; ~ 5 ( 2 )  v,, vu, 

which form a 5-spinor basis. If we use the quantities ATo(2) discussed in GAR we have 
the explicit relation 

So that Sachs’ definition of +2, etc., 

2 
= 4“5M, etc. 

agrees with ours, up to a factor. 
In  the approach of Debever (1964) and Geheniau (1957) (see also Synge 1964, Peres 1962, 

Buchdahl 1966, Cahen et al. 1967) use is made of bivectors (or 3-spinors) which are, so to 
speak, the fundamental ‘building units’ for quantities of integral spin. The  classification 
devolves upon the distribution of the eigenvalues of a 3 x 3 complex matrix W obtained 
from the Weyl tensor. Using the notation of GAR we have for this matrix 

Wrs E A~v(l)A~a(l)C~vu~. 
I t  is shown in Debever (1964, $ 17) that the problem of the various Petrov types is, 

geometrically, just that of the relative positions (i.e. the distribution of the intersections) 
of two conics. I n  our language we would say that these two conics are situated in 3-spinor 
(i.e. (1,O)) space. They are given by the equations 

This result follows from our discussion in 5 3 by Burnside’s somewhat elementary theorem 
that solving the quartic equation is equivalent to solving two simultaneous quadratic 
equations. 

Turning briefly to the 2-spinor technique (Penrose 1960, Witten 1959), instead of 
4(2)  or ChvaS the symmetric fourth-rank 2-spinor $abed is employed and the quartic 
fm+,,, is written as # a b c d f a f b [ c [ d ,  E m  being a (null) 5-spinor formed from four 2-spinors. 
It will be appreciated that our discussion of the classification is exactly the same as that 
given by Penrose (1960) ; only our notation and geometrical representation are different. 

4“(1)441) 0 +‘(1)J+’rdS(1)* 

P A  
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7. Discussion and conclusion 
One advantage of the (2j+ 1)-spinor formalism is that it allows us to make use of the 

standard results of algebraic theory rather more immediately than the other formalisms 
and one concentrates on the actual algebraically independent degrees of freedom of the 
fields. Again, as we have mentioned previously, the various formulae are compact in 
appearance. For example the expression for the cubinvariant J in terms of a 3 j  symbol is, 
we think, quite neat. Also we think that the pictorial representation of the Petrov-Penrose 
classification given in $ 4  is rather attractive. Unfortunately one pays a price for this elegance 
in that in any particular calculation, if one uses the (2j+l)-spinors, specific algebraic 
properties of the 3j symbols may be needed, and it is not clear where these will come from 
unless we go back to the basic 2-spinor algebra. We do not, therefore, claim that a 
‘universal’ use of our formalism always leads to significant computational advantages. 

An advantage of the 2-spinor formalism, and therefore a disadvantage of the (2j+ 1)- 
formalism, is the simple relation between 4-vectors and 2-spinors. This shows up, 
for example, in the expression +abed = a(,Pbyc8d) for the curvature spinor in terms of the 
principal null 2-spinors a,  p, y, 6. The  principal null vectors of the curvature are then 
just the null vectors associated with ‘x, P, y ,  6. Again, because space-time is most con- 
veniently (presumably) described in terms of a 4-vector the usual dynamical equations 
for the fields involve a derivative V, which, in some ways, seems to stick out and ‘spoil’ 
the (2j+ 1)-formalism. 
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